
„Błony komórkowe separują tętniące życiem wnętrze komórki od jej otoczenia. Mimo tak fundamentalnej roli, wiele szczegółów związanych z mechanizmami odpowiedzialnymi za funkcjonowanie błon komórkowych wciąż pozostaje nieznanych. Głównym czynnikiem hamującym postęp badań jest trudność w tworzeniu błon o nanometrycznej grubości, które mogłyby służyć do eksperymentów” – informuje Instytucie Chemii Fizycznej PAN w przesłanym PAP komunikacie.
Wkrótce – dzięki układowi mikroprzepływowemu – badania błon komórkowych staną się łatwiejsze. Taki układ zbudowano w warszawskim Instytucie Chemii Fizycznej Polskiej Akademii Nauk (IChF PAN) we współpracy z Laboratorium Badań Chemicznych Uniwersytetu w Oxfordzie.
Jak tłumaczą specjaliści z IChF PAN, typowe błony komórkowe składają się z dwóch warstw fosfolipidów, z którymi na różne sposoby wiążą się różne typy białek. Od kilku lat w laboratoriach dwuwarstwowe membrany wytwarza się doprowadzając do zetknięcia dwóch kropel, każdej pokrytej pojedynczą warstwą lipidową. Jeśli proces przeprowadzi się umiejętnie, krople się nie zleją, a na granicy styku spontanicznie utworzy się lipidowa dwuwarstwa.
„We współpracy z grupą profesora Hagana Bayleya z Uniwersytetu w Oxfordzie skonstruowaliśmy układ mikroprzepływowy, który nie tylko automatyzuje proces prowadzący do powstania niezwykle stabilnego styku na granicy dwóch mikrokropel i wytworzenia dwuwarstwy, ale także pozwala na dokonywanie pomiarów elektrofizjologicznych. Jesteśmy w stanie śledzić na przykład przebieg wbudowywania się konkretnego białka w błonę komórkową” – mówi prof. Piotr Garstecki z IChF PAN.
Jak czytamy w przesłanym PAP komunikacie, w nowym układzie, w mikrokanałach wypełnionych olejem, płyną dwa rodzaje kropel pokrytych monowarstwami lipidowymi. Jedne zawierają roztwór białka zdolnego do wbudowywania się w błonę komórkową, w pozostałych znajduje się neutralna ciecz lub inhibitory zdolne do wiązania się z białkiem w kroplach pierwszego rodzaju. Gdy dwie mikrokrople, każda innego typu, wpływają do miniaturowej komory pomiarowej, są w niej precyzyjnie pozycjonowane dzięki pułapkom hydrodynamicznym opracowanym przez IChF PAN we współpracy z firmą technologiczną Scope Fluidics.
„Zadanie nie jest proste. Badane przez nas błony komórkowe mają grubość kilku miliardowych części metra i łatwo je zerwać. Dzięki pułapkom hydrodynamicznym mogliśmy nie tylko ustabilizować położenie kropel, ale także zapobiec drganiom membran, pojawiającym się naturalnie podczas przepływów” – wyjaśnia doktorantka Magdalena Czekalska z IChF PAN.
Wytwarzane ręcznie, dwuwarstwowe membrany są bardzo wrażliwe i utrzymują się zwykle od kilku minut do kilku godzin. Błony komórkowe w nowym układzie mikroprzepływowym są znacznie stabilniejsze: ich czas życia sięga nawet kilku dni. Jednocześnie układ umożliwia oderwanie jednej z kropel, co prowadzi do zniszczenia dotychczasowej membrany, a następnie dołączenie nowej kropli, z czym wiąże się powstanie nowej błony.

Tak? Wystarczy kliknąć baner.
„Cały cykl pomiarowy – rozdzielenie kropel, przepłukanie mikroelektrod, zetknięcie nowych kropel, wytworzenie membrany oraz pomiar zakończony obserwacją wbudowania białka w błonę komórkową – może zająć zaledwie trzy minuty” – informują eksperci z IChF PAN.
„Przeprowadzone przez nas pomiary to dowód, że w nowym układzie mikroprzepływowym powstają funkcjonalne błony komórkowe. Mamy więc w pełni zautomatyzowane pomiary przy zminimalizowanym zużyciu substancji potrzebnych do przeprowadzania doświadczeń. Droga do seryjnych badań mechanizmów zachodzących w błonach komórkowych została otwarta” – podsumowuje prof. Garstecki.
Badania sfinansowano w ramach programu VENTURES Fundacji na rzecz Nauki Polskiej, a także ze środków prestiżowego grantu europejskiego ERC Starting Grants.